
CX-ASAP

 2022

A LIBRARY OF MODULES TO ASSIST WITH THE HANDLING OF LARGE
CRYSTALLOGRAPHIC DATA SETS
AMY J. THOMPSON, KATE M. SMITH, DANIEL J. ERICSSON, JACK K. CLEGG, JASON R.
PRICE

UNIVERSITY OF QUEENSLAND | ANSTO Melbourne - The Australian Synchrotron

Table of Contents
Introduction ... 3

Quick Start Guide.. 4

Requirements .. 6

Operating system requirements ... 6

Software requirements .. 6

Linux - Instructions for setting up a Linux Virtual Machine ... 7

Linux - Instructions for installing Python ... 10

Linux - Instructions for putting software in your path ... 12

Linux - Common Errors ... 12

MacOS - Instructions for installing Python ... 13

MacOS - Instructions for putting software in your path .. 14

MacOS - Common Errors .. 14

Windows - Installation Instructions ... 15

Windows - Common Errors ... 16

Additional notes for XDS Installation .. 17

Installing XPREP on a Mac .. 20

GitHub Configuration ... 22

Installation ... 23

CX-ASAP Installation ... 23

Testing Your Installation ... 24

Reporting Errors .. 24

Using CX-ASAP ... 25

Command-line Interface ... 25

Configuration Using ‘conf.yaml’ .. 26

Error Logs ... 27

Structure and Execution .. 29

Pipelines .. 30

Cxasap Pipeline ... 30

What it does .. 30

Input Files/Directories... 30

Output Files/Directories .. 30

Yaml Parameters ... 32

Cxasap Pipeline (setup) ... 33

What it does .. 33

Input Files/Directories... 33

Output Files/Directories .. 33

Yaml Parameters ... 35

Refine Pipeline .. 36

What it does .. 36

Input Files/Directories... 36

Output Files/Directories .. 36

Yaml Parameters ... 37

Cif Pipeline ... 38

What it does .. 38

Input Files/Directories... 38

Output Files/Directories .. 38

Yaml Parameters ... 38

Analysis Pipeline... 38

What it does .. 39

Input Files/Directories... 39

Output Files/Directories .. 39

Yaml Parameters ... 40

Introduction

CX-ASAP is a library of modules which was designed to increase the efficiency of handling large
crystallographic data sets. The modular design of this library means that pipelines can piece these modules
together in different ways to automate the processing of large data sets.

What counts as a large data set?

In this case, a ‘large data set’ refers to a series of measurements performed on the same crystal. Examples of
dynamic experiments include variable temperature, variable pressure and variable position. Such experiments
allow for valuable insights into crystal systems including (but certainly not limited to!) mapping phase
transitions. The fact that these data sets are performed on the same crystal means that reference structures can be
used to replace the monotonous task of solving and refining the same thing over and over. Where phase
transitions occur, this can be handled by having multiple reference structures – specifically, one reference per
structural phase.

What does not count as a large data set?

CX-ASAP will NOT help you with stand-alone structures with large unit cells and large collections of unrelated
structures. While tools exist to automatically solve and refine structures, these are not fool-proof, and CX-ASAP
does not attempt this. Rather, it takes a reference structure, and uses it to finalise large series of the same model.

What can I expect out of this code?

Used correctly, CX-ASAP can provide finalised CIF Files, auto-generated checkCIF reports, and tabulated data
of cif parameters (such as unit cell axis and bond lengths). Graphical analysis can quickly show how the unit cell
axes are changing, if any of the specified structural features change, and provide feedback on the refinement
quality. It is, however, important to keep in mind that you get out what you put in. If your reference model is not
appropriate, then your finalised files will contain many errors. If you do not provide full instrument parameters
for your collection, then these will be missing in the final CIF files.

By carefully following this manual, you can expect the highest (possible) quality for your data sets.

Quick Start Guide

Once you have extracted all the files, go into the parent folder and open README.md (shown below):

The README.md file will guide you through installation and troubleshooting. Then you can execute the code
by typing the below into your terminal:

cxasap

You will be presented with a command-line interface that will guide you through usage of the code.

The rest of this document is aimed to assist in setting up your computer and providing a more in-
depth guide if you require additional information.

In the command-line interface, you will be given a rough workflow, as well as several commands you
can choose from. The general syntax is:

cxasap --option command --argument

The only ‘option’ available is the --help option.

To test that all software dependencies are satisfied, you should run the test command. You can do this
by typing:

cxasap test

Help is always available as an argument as well. For instance, if you are unsure how to run the
command ‘module-refinement’, you would type:

cxasap module-refinement --help

Note that ‘options’ are optional, while ‘arguments’ are required.

Within each command (except for ‘errors’ and ‘test’), you should first use the arguments in the below
order:

--dependencies (will tell you the required software for this code to run)
--files (will tell you the required file structure/input files)
--configure (will write your yaml file – NOTE THAT YOU MUST FILL THIS IN MANUALLY)
--run (will execute the code)

Requirements

Operating system requirements

Linux, Mac OS, or Windows.

For installation guides for the various operating systems, navigate within this document to the appropriate
subheadings.

Software requirements

• Python (at least version 3)
• SHELXL (http://shelx.uni-goettingen.de/download.php)
• ShredCIF (http://shelx.uni-goettingen.de/download.php)
• Platon (https://www.platonsoft.nl/platon/)
• XDS (for future versions of CX-ASAP!)
• XPREP (for future versions of CX-ASAP!)

Note that all software needs to be on your path (also known as setting the environment variables for those used
to Windows). If you are unfamiliar with setting your path, see the ‘Instructions for putting software in your path’
section.

If I have a Windows computer, should I run CX-ASAP on Windows?

In this case, you have two options. You can either install a virtual machine running Linux or run CX-ASAP on
windows. The first release of CX-ASAP, from structure refinement onwards, will function on Windows when set
up correctly. Future releases of CX-ASAP, however, may not be compatible with Windows, as they utilise XDS,
which is not currently compatible with Windows. Therefore, a virtual machine running Linux is recommended.
The downside is that a virtual machine has limited computer resources and thus may run a bit slower; however,
if your main computer has high enough specs, you should be able to dedicate enough resources for it to run at a
reasonable pace.

https://urldefense.com/v3/__http:/shelx.uni-goettingen.de/download.php__;!!NVzLfOphnbDXSw!VmX-P9sZOT6s1QJbJCSfDiZufqzMYpMXKs4IErjRIf08iWc1WHIjjnZTKzi7DxDJ-xhUbov5m1c$
https://urldefense.com/v3/__http:/shelx.uni-goettingen.de/download.php__;!!NVzLfOphnbDXSw!VmX-P9sZOT6s1QJbJCSfDiZufqzMYpMXKs4IErjRIf08iWc1WHIjjnZTKzi7DxDJ-xhUbov5m1c$
https://www.platonsoft.nl/platon/

Linux - Instructions for setting up a Linux Virtual Machine

Download

If you do not have linux running on a computer already, you will need to install two things: a program
to handle virtual machines, and linux itself. A virtual machine is a way to run an additional computer
within your computer. The below instructions are for Oracle VM VirtualBox, which is free software
that can be downloaded using the below link:

https://www.virtualbox.org/wiki/Downloads

If your computer is running windows, you should download the latest version of ‘Windows hosts’
(currently at version 6.1.16).

Next, you will need to download Linux. The file you download is just like an installation disc, and you
can delete it once linux is installed (otherwise you might run out of space on your computer!). This
guide will use Linux Mint, although any version of linux should work. Linux Mint is available to
download here: https://www.linuxmint.com/edition.php?id=281 . You can use any of the mirroring
services to download Linux Mint, although the two World Mirrors have found to be significantly faster
than the Australian specific one.

Set up Linux VM within Oracle VM VirtualBox

In addition to the steps outlined in the example provided above, some simple points are outlined below
to assist you through the process. First, open Oracle VM and click ‘new’. As you step through the
setup, the below points will guide the options you pick.

● Name for your virtual machine - this can be anything (ie ‘Linux for XDS’)
● Type should be Linux
● Version should be Ubuntu 64-bit
● Memory - make sure you stay in the green bar (you will want to provide as much RAM as your

hardware can, while also leaving enough for your main computer to run effectively - the green
bar will guide this)

● Hard disk - leave it as ‘create a virtual hard disk now’
● Hard disk file type - VDI - dynamically allocated is fine (if you know about computers and

have different requirements feel free to change this)
● Location - the place your virtual machine will be saved on your computer, you will require a

significant portion of space, especially because crystallography files can be large -
recommended 100 GB if possible (should likely be 50 GB as a minimum)

To run your virtual machine -

1. Select the VM from the home screen of Oracle VM VirtualBox (under whatever name you
chose) and double click on it to start.

https://www.virtualbox.org/wiki/Downloads
https://www.linuxmint.com/edition.php?id=281

2. When the ‘Select Start Up Disk’ screen pops up (see below), change the option to the location
you have downloaded Linux Mint to (from Step 1 - likely in your Downloads Folder) - this file
should be a ‘.iso’ file

The VM will then start up, and you will be prompted to install Linux Mint. Follow the prompts to
install. When you see the below message, do not worry! Selecting this option will not erase your hard
drive - the virtual machine does not know about the existence of your main computer.

Once you have installed Linux Mint within your VM, you will be prompted to enter a name and
password for your virtual machine. At this point, your VM will begin downloading and will require a
restart. This will only restart your VM, not your host computer.

Once restarted, the VM may prompt you to remove the disk - click enter - you don’t have to delete
anything right now; however, to save disk space, it is recommended that you do delete the .iso file you
originally downloaded. Now that Linux Mint is installed, you no longer need the .iso file.

Restart the VM and prepare for more updates! To do this, open the terminal. The terminal is the fastest
and most useful way to control Linux without need for a mouse. It is path specific, and you can open it
in different locations in your directory tree; however, for this next step, it does not matter where you
open it from. Use the below update/upgrade commands. It will ask for confirmation, at which point
type ‘Y’.

Note: If you get a ‘check your video driver’ notification about your system lacking video hardware
acceleration, you will need to shut down your virtual machine and return to Oracle VM VirtualBox.
Select your Linux VM and go to settings/display and check ‘Enable 3D Acceleration’. You can then
restart your linux VM.

Setting up a Share Folder

IMPORTANT NOTE - Do NOT turn off your virtual machine during Step 3 except where explicitly
directed! We have had cases where this has completely corrupted and crashed the VM.

Setting up a share folder will allow you to move files between your host computer and your virtual
machine. First, there are some additional packages which you will need to download. Open the start
menu of your linux machine and search for ‘software manager’. Using the software manager, download
the below three packages:

● virtualbox-guest-X11
● virtualbox-guest-utils
● virtualbox-guest-dkms

A link here is provided which will assist you in setting up a share folder for your Linux VM
(https://www.linuxbabe.com/linux-mint/install-virtualbox-guest-additions-in-linux-mint). Follow
these instructions, noting that you should have already updated all your packages. You also may not be
able to see the shared folder during the instructions.

https://www.linuxbabe.com/linux-mint/install-virtualbox-guest-additions-in-linux-mint#comments

Linux - Instructions for installing Python

First, you will need to check and see if python is already installed on your Linux machine. You can do this by
opening the terminal and typing the below command:
python

If your computer is already running python, something like the below image should come up.

If you do not have python, you should see a different screen.

Note that you will need to be running at least Python 3.6! If you have python already installed, check the version
number – if you are running python 2, then you need to upgrade.

To install python, run the below code in your terminal:

You may see an error like the one below:

If this occurs, type into the terminal the below code:

sudo dpkg --configure -a

During configuration, accept any prompts the terminal provides. Once it is done, rerun the installation of
python3.

To check if it has installed correctly, type ‘python3’ into your terminal.

Next, to make sure that you are always running python3, you should set an alias in your bashrc file. Open your
terminal and type the following command:

sudo apt-get install python3

Note that xed may not be available (depending on what version of linux you are running). If this command
doesn’t work, we recommend you use ‘kate’. You can install kate by typing:

sudo apt-get install kate

Then, you can access your bashrc file by typing:

kate ~/.bashrc

Inside of this file, write the following (you may wish to put it under a subheading commented out with a ‘#’)

Make sure you save and close the bashrc file and restart your terminal for the changes to take effect.

If you re-open your terminal, you can check this has worked by typing ‘python’. To close python, type ‘exit()’.

Next, you will need to install pip. Pip is a helpful package manager for python, and is used to install libraries.
Install pip by typing the below code into the terminal:

sudo apt-get install python3-pip

Most of the python libraries used by CX-ASAP will be installed automatically; however, you will need to
manually install ‘setuptools’. Do this by typing the below code into your terminal:

xed ~/.bashrc
xed = a text editor

~/.bashrc = path to your bashrc file

alias python=python3
alias tells the terminal to replace what you type with what you define.

Ie, whenever you type ‘python’ from now on, the terminal will
interpret it as ‘python3’

python –m pip install setuptools
pip is the software that handles installation of python libraries

Linux - Instructions for putting software in your path

To put your programs into your path, it is recommended that you make a folder to dump all of your
executables in. You may like to put it in /usr/local/bin. Note that to create folders and move files in this
directory to will need admin privileges. You obtain this by right clicking in the file explorer and
selecting ‘open as root’. Then, to set your folder as a path, type the following command into the
terminal (located anywhere in the file system):

Note that xed may not be available (depending on what version of linux you are running). If this command
doesn’t work, we recommend you use ‘kate’. You can install kate by typing:

sudo apt-get install kate

Then, you can access your bashrc file by typing:

kate ~/.bashrc

Anywhere within this file, type the following commands on a new line:

export PATH=full_path_name_to_folder:$PATH

full_path_name_to_folder = the path to your folder (example: /usr/local/bin/my_program_folder)

Anytime you make changes to your bash profile, you will need to restart your terminal for the changes
to take effect.

Linux - Common Errors

Always check the file permissions! To do this, open the file explorer as root, right click on the files,
click properties, and permissions. Make sure the user is set to read/write permissions (not just root!)
and also tick the box that sets the file as executable (note that this can also be achieved using the
‘chmod’ command within the terminal if you are familiar with command line operations).

MacOS - Instructions for installing Python

While MacOS comes with python2, CX-ASAP requires python 3 to run. Firstly, you should download Xcode.
This can be found in the apple store. Once you have installed Xcode, open a terminal and type the below code:

xcode-select –install

This will install the commandline tools associated with Xcode.

Next, you should install homebrew. Homebrew is a package manager which will be particularly useful for
MacOS. To do this, open your terminal and copy the below code:

/bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

Accept any prompts given in the terminal. You will also need to add Homebrew into your path (see ‘Instructions
for putting software in your path – MacOS’). Note that the path you will need to add is
“/usr/local/opt/python/lbexec/bin”

Next, you can install python 3 by typing the below command:

brew install python

Make sure that the correct version of python is being called by typing the below code into your terminal:

python –version

MacOS - Instructions for putting software in your path

To put your programs into your path, it is recommended that you make a folder to dump all of your
executables in. You may like to put it in /usr/local/bin. Then, to set your folder as a path, you will need
to edit your bash profile.

First, check if you already have one. Open your terminal and navigate to the home folder by typing the
below command:

cd ~/

To open your bash profile (if it exists), type:

open .bash_profile

If the file does not exist, create it by running the below command:

touch .bash_profile

To add a folder into your path, add the below command to the bash_profile:

export PATH="full_path_name_to_folder:$PATH"

If you have OS X 10.12 (Sierra) or older, you may need slightly different syntax:

export PATH=full_path_name_to_folder:$PATH

full_path_name_to_folder = the path to your folder (example: /usr/local/bin/my_program_folder)

Anytime you make changes to your bash profile, you will need to restart your terminal for the changes
to take effect.

MacOS - Common Errors

Check commandline tools for Xcode are turned on. To do this, start Xcode and navigate to Preferences. In the
General panel, click Downloads. Choose the Components tab. Click Install next to ‘command line tools’.

Windows - Installation Instructions

Step 1: Firstly, you will need to download the C++ development tools for windows. This is done using
the Visual Studio installer.

Visual Studio can be downloaded from the below site (select Community 2022 from the dropdown
menu):

https://visualstudio.microsoft.com/

Note: Visual studio installer 2019 also works, and you may need administrative rights to do this
installation.

If Visual Studio Installer doesn’t launch automatically, open it and install “Desktop development with
C++”.

Step 2: Download and install Python.

Python can be downloaded from the below site. Note that this code works with all versions of Python3
up to 3.9.11.

https://www.python.org/downloads/windows/

Python3.9.11 for 64-bit Windows can be directly downloaded from the below link.

https://www.python.org/ftp/python/3.9.11/python-3.9.11-amd64.exe

We recommend installing this with some custom settings, including putting it somewhere sensible like
C:\program files\ , installing for all users, and adding it to your computers path (included in the
installer).

You can test this by opening a command prompt and typing:

python

Note that to exit python you type the below:

exit()

Step 3: Restart your computer.

Step 4: Install CX-ASAP using the instructions in the README.md (or in the Installation section in
this document).

Step 5: Check if you have ‘make’ installed on your computer. To do this, open windows powershell and
type the below:

make

https://visualstudio.microsoft.com/
https://www.python.org/downloads/windows/
https://www.python.org/ftp/python/3.9.11/python-3.9.11-amd64.exe

If the below text shows up, you have make installed correctly

“make: *** No targets specified and no makefile found. Stop.

If you have an error like below, you need to install make.

Make can be downloaded from the below website. Note that you should download the ‘Setup program’
version of make for ease of installation.

http://gnuwin32.sourceforge.net/packages/make.htm

You will then need to find the path to the make executable and add it to your system environment
variables. It is recommended that you do this in the system wide path so that it will be accessible for all
users. To check that this is done correctly, restart windows powershell and type ‘make’ again.

Windows - Common Errors

If you opt for the virtual environment installation of CX-ASAP (recommended), you may have some
issues activating the environment. If you get an error saying that your virtual environment activation
script “cannot be loaded because running scripts is disabled on this system”, follow the instructions on
the below website to fix this issue.

https://www.partitionwizard.com/clone-disk/running-scripts-is-disabled-on-this-system.html

http://gnuwin32.sourceforge.net/packages/make.htm
https://www.partitionwizard.com/clone-disk/running-scripts-is-disabled-on-this-system.html

Additional notes for XDS Installation

Installing XDS

The documentation for XDS contains a lot of important information about the file types used, the
parameters you can change, and the input/output files of each step. A link to the documentation is
below.

http://xds.mpimf-heidelberg.mpg.de/html_doc/XDS.html

XDS itself can be installed from the below link. Instructions for installing XDS are also found from this
link; however they are also expanded upon below.

http://xds.mpimf-heidelberg.mpg.de/html_doc/downloading.html

Once downloaded and uncompressed, you should put the files in your path. If you do not have a path,
move your uncompressed XDS folder to /usr/local/bin (you can access the /usr folder from ‘file system’
in the Linux file explorer). You may need to use admin privileges to do this (by right clicking in the
window and selecting ‘open as root’).

Open your bashrc (linux) or bash_profile (mac) file. Anywhere within this file, type the following two
commands on new lines:

export PATH=full_path_name_to_XDS:$PATH
export KMP_STACKSIZE=8m

● Full_path_name_to_XDS = the location of the folder where your XDS files are (example:
/usr/local/bin/XDS-INTEL64_Linux_x86_64)

NOTE: if the very long name of ‘XDS-INTEL64_Linux_x86_64’ also annoys you and you have
changed it to something nicer like ‘XDS’ make sure you change the path name (ie /usr/local/bin/XDS).
The path name also does NOT need to include the file names - it is the path to the folder containing the
files.

Make sure you close and reopen your terminal at this point.

If all is set up correctly, you should be able to type ‘xds’ into the terminal (located anywhere in the file
system), and the program will run. Similarly, type ‘xds_par’ to run the parallel version.

Preparing to Run XDS

There are some additional tools you will need before being able to process images from the Australian
Synchrotron. The first of which is the ‘dectris neggia library’. This is essentially a file that tells XDS
how to read the .h5 files output from the current Eiger detectors.

Download the library from the below GitHub link:

https://github.com/dectris/neggia

http://xds.mpimf-heidelberg.mpg.de/html_doc/XDS.html
http://xds.mpimf-heidelberg.mpg.de/html_doc/downloading.html
https://github.com/dectris/neggia

First download the code by clicking ‘code’ and then ‘download zip’

Un-zip the folder and open your terminal. GitHub provides some instructions on how to install the
required dependencies, but it is for different versions of linux, so you should follow the below
instructions instead.

You will need to install the package ‘cmake’. To do this, type the below code into your terminal:

sudo apt-get install cmake

Again, you will need to type ‘Y’ to confirm the installation of packages.

Then, navigate to where your uncompressed folder is (it might be called something like ‘neggia-
master’). Make sure your terminal is open in this folder - you can either navigate within your terminal,
or simply open the terminal by right clicking on the screen inside the folder and selecting ‘open in
terminal’. Make sure you are INSIDE the ‘neggia-master’ folder when you do this.

Next, type the below four lines into your terminal:

mkdir build

cd build

cmake ..

make

The only file you actually need from this folder is ‘dectris-neggia.so’, and it is found under
‘build/src/dectris/neggia/plugin’. You may wish to move this file somewhere more convenient, but this
is optional.

XDS can also be run in parallel mode, meaning it can run over multiple processors to speed things up.
You should look up how many processors you assigned to your virtual machine (found by selecting
your VM in Oracle, clicking settings, and navigating to system/processor).

To execute xds in single processing mode, you will type into the terminal: ‘xds’

To execute xds in parallel processing mode, you will type into the terminal: ‘xds_par’

Installing XPREP on a Mac

Xprep does not natively run on a mac. For full pipelines involving data from the Australian
Synchrotron, xprep is required. To have it functioning on your mac, you will need to have a copy of the
linux version of xprep and follow the below instructions.

You will be using karton (https://karton.github.io/), and your computer will need to be on the web.

Step 1. Install Docker (https://docs.docker.com/engine/install/)
Step 2. Install Karton (https://karton.github.io/install.html). In a terminal window type: pip install
karton.
Step 3. Use Karton to install a Ubuntu image called ‘karton-ubuntu’:

i) In terminal type: karton image create karton-ubuntu ~/karton-ubuntu
This will create the directory karton-ubuntu in your home directory and place file
in it called definition.py

ii) Navigate to ~/karton-ubuntu and open definition.py
a. Find props.distro and edit so it reads:
props.distro ='ubuntu:latest'
b. Edit the file to make directories you wish accessible to it at the very least make ~/src

accessible by including:
props.share_path_in_home('src')
We recommend using CX-ASAP in a directory called Frames so also add:

 props.share_path_in_home('Frames')
 You can add as many directories as you like in this way (or others following the

instructions).
Also add:
props.packages.extend(['build-essential', 'gdb'])

save the file

iii) Now use Karton to build the image. In the terminal type:
karton build karton-ubuntu

iv) Copy the linux version of xprep somewhere that karton can access (we recommend ~/src). Call it
something like “linux-xprep”

v) Copy the following script into a text document:

#!/bin/sh
karton run ubuntu-image ~/src/xprep

and save it in /usr/local/bin as ‘xprep’

If you cannot find /usr/local/bin, open Finder and press Command+Shift+G to open a dialogue box. Input
‘/usr/local/bin’ to search for it.

Go back to your terminal and type:
cd /usr/local/bin
sudo chmod a+x xprep

https://karton.github.io/
https://docs.docker.com/engine/install/
https://karton.github.io/install.html

Close the terminal

vi) Test by navigating to somewhere Karton has access to like ~/Frames and type xprep.

GitHub Configuration

If you only wish to use the code, then it is not a requirement to link up to GitHub. You can simply download the
code and install. This has the downside of meaning you will have to go to GitHub to check for updates and
redownload any new releases.

If you wish to be able to quickly update code, or if you wish to contribute to CX-ASAP, it is required that you
use Git. Git is a version-control system for software development which is integrated into ‘GitHub’ where the
source code for CX-ASAP is stored. To do this, first open your terminal.

For Linux Users:

To install Git, run the below command:

sudo apt-get install git-all

For MacOS Users:

Homebrew is the easiest way to install git on a Mac. To do this, run the below command:

brew install git

Next, regardless of your operating system, navigate in your terminal to the location in your file system where
you want to save the code. Then, run the below command:

git clone https://github.com/cx-asap/CX-ASAP.git

Choose which branch you want to work from (main, or dev)

git switch dev OR git switch main

You should frequently check GitHub for updates. To do this, in the same folder, open a terminal and run the
below command:

git pull origin main OR git pull origin dev

For Windows Users:

Go to the below website and download the Git for Windows tool.

https://gitforwindows.org/

https://gitforwindows.org/

Installation

CX-ASAP Installation

To install CX-ASAP, navigate to the location in your file system where you saved the code. You should be in this
folder:

In this folder, you can check the ‘README.md’ file for initial instructions, including some installation
troubleshooting. This file also tells you how to start the code.

Open a terminal in this location. In Linux, you can do this by right clicking on the window and selecting ‘Open
in Terminal’, or you can navigate to it manually. Once here, you have several installation options depending on
how you want your computer and environment set up.

If you wish to install CX-ASAP straight onto your computer (not recommended if you are familiar with
computers and virtual environments), type the below command into your terminal:

make install-quick

If you are familiar with working with virtual environments, it is recommended that you use the below command
instead. This will install CX-ASAP into a new virtual environment called cxasap_venv (located in the same path
as the make file). It will require manual activation each time you wish to use the software.

make install-venv

If you want command-line completion (where you hit the TAB button and it autocompletes), run the additional
command below (not required – also not available for windows).

make cxasap-complete

If you also want an alias set up for easy access to the yaml file, you can also run the below additional command
(not required for use – also not available for windows). This means that if you are on Mac or Linux OS, you will
be able to type ‘cxasap_yaml’ into the commandline and the yaml will open automatically for you.

make yaml-alias

Note that any changes you have made to your conf.yaml file will be erased upon re-installation. This is to
make sure you are using the correct (and a simplified) conf.yaml file. Your error logs will also be reset upon
re-installation. The purpose of these two files will be explained in the following section.

Testing Your Installation

The first time you run ‘cxasap’ you should chose the ‘test’ command. This will run through some
analysis on the included test data set to make sure your programs and files are correctly set up.
You can do this by typing:

cxasap test

Reporting Errors

If you encounter a problem with the code itself, please contact us and describe in detail the bug you are
experiencing. This should be done through the GitHub page.

To further assist us in helping you, please provide any screenshots you feel may be relevant to describing your
error, and attach a copy of your error logs. Unfortunately, this is not always enough to fix strange problems. If
you feel comfortable doing so, and are not at risk of breaking intellectual property, sharing your raw data with us
will likely assist us in solving the errors. However, never share data that would be a breach of IP, and you are
never under any obligation to provide raw data. If you do feel uncomfortable sharing your data and we cannot
fix the bug with screenshots alone, perhaps try and recreate the error on an already published data set that you
are able to share with us.

If you have problems installing any of the requirements (ie python, platon, SHELXL, etc), please refer first to
the many online help guides available. If you are still unable to solve these problems yourself, feel free to
contact us and we will endeavour to assist you.

Using CX-ASAP

Command-line Interface

CX-ASAP uses a command-line interface. This will guide you through using the software and provide
all the hints you need. First, you will need to type into your terminal:

cxasap

From here, you will be given a rough workflow, as well as several commands you can choose from.
The general syntax is:

cxasap --option command --argument

The only ‘option’ available is the --help option. Help is always available as an argument as well. For
instance, if you are unsure how to run the command ‘module-refinement’, you would type:

cxasap module-refinement --help

Note that ‘options’ are optional, while ‘arguments’ are required.

Within each command (except for ‘errors’ and ‘test’), you should first use the arguments in the below
order:

--dependencies (will tell you the required software for this code to run)
--files (will tell you the required file structure/input files)
--configure (will write your yaml file – NOTE THAT YOU MUST FILL THIS IN MANUALLY)
--run (will execute the code)

Configuration Using ‘conf.yaml’

After you have configured your experiment, you will find a file called ‘conf.yaml’ in the ‘cx_asap’ folder.

If you are on Linux or Mac OS and you used the “make yaml-alias” option during installation, you can simply
type “cxasap_yaml” and the conf.yaml file will open automatically. If you are using windows, or you did not
choose this option, you will need to navigate here manually and open the file with a text editor of your choice.

‘conf.yaml’ is a ‘yaml’ file, which is a recursive acronym for ‘YAML Ain’t Markup Language’. These files store
values assigned to specific parameters. This is also how you will configure all of the code that you run. Once you

have selected a pipeline, you will need to fill out the required parameters. Yaml files can be edited with a text
editor of your choosing.

Your yaml file will be rewritten every time you configure your experiment, so if you wish to save a copy
elsewhere for later use, make sure you do that.
Note that re-installing CX-ASAP will remove any entries you have saved in your yaml file. This is to make sure
that the most up-to-date configuration file will be used with the code.

Tips for troubleshooting:

• File paths must be the full path!
• File paths should include the file name (including the ending) if it belongs to a file (not required if the

path is to a folder)

Error Logs

CX-ASAP regularly logs information which may be useful in debugging errors. It may also prove useful for a
user to read through if they get an unexpected output even if the code has successfully gone to completion. These
logs can be found in the cx_asap/error_logs folder. This folder will contain the most recent 5 error logs, so may
be useful if you need to go back. The most recent one relevant to your experiment will also be copied over to
your data location where you ran the code. The error logs are contained in ‘error_output.txt’. Like the conf.yaml
files, it can be opened using a simple text editor. Otherwise, this file can be accessed through the command-line
interface.

Note that re-installing CX-ASAP will clear and reset the error log. If you require a copy, make sure you save it in
a different location prior to updating CX-ASAP.

Structure and Execution

CX-ASAP is built from a library of modules which perform specific tasks, like refining a dataset. Job-specific
pipelines were designed to execute these modules on a series of datasets. For example, a refinement pipeline
would refine a series of structures. Overall pipelines bring the job-specific pipelines together to increase
automation. For instance, it can refine your structures, compile the CIF files and analyse them. This means that
certain steps can be repeated or done alone depending on the needs of your data. For instance, some tricky data
may require manual refinement, but by using job-specific pipelines, you can still automate the compilation of
CIF files and the extraction of key data.

The workflow for using CX-ASAP is shown in the below diagram. This document requires all required
information. In the ‘Pipelines’ section there are detailed descriptions for what each pipeline does, what its
input/output files are, how your directory tree should be set up, and what parameters require editing in the
conf.yaml file.

Pipelines

Cxasap Pipeline

What it does

This is the general overall pipeline that will automatically refine, finalise and analyse a series of
structures based off a common reference. You should use this pipeline if you have a set of reduced data
files from a dynamic crystallography experiment, such as a variable temperature experiment. Note that
this pipeline works from a reference CIF – if you do not have one of these, or you don’t have your files
in the correct directory structure (see Input Files/Directories), consider using ‘Cxasap Pipeline (setup)’

Input Files/Directories

You must have the following files to use this pipeline:

• .ins for each structure – must contain cell data
• .hkl for each data set – must contain all reflections
• Reference CIF – must contain instrument information and crystal information (ie size/colour/habit)

It does not matter where your reference CIF is located on your computer, but your .ins/.hkl files must be in
separate folders. It also does not matter what your folders are called or what your .ins/.hkl files are called. The
only restriction of course is that SHELXL requires your .ins and .hkl files to have the same name as each other.
The file structure of your ‘working directory’ for n data sets should be as shown below:

Output Files/Directories

CX-ASAP will create two additional folders in your working directory: ‘CIF_Analysis’ and
‘Refinement_Statistics’.

CIF_Analysis contains your finalised structures and various forms of analysis. Output files/directories in this
folder are listed below:

• Combined.cif – this is your finalised CIF file, which combines each of the individual structures in your
working directory

• Check_CIF.chk – this is your automated checkCIF report for all structures in the combined CIF file

• CIF_Parameters.csv – this file contains your tabulated CIF parameters including (but not limited to!)
unit cell axis and data quality statistics – your conf.yaml file will allow you to specify what data is
extracted here

• Cell_parameters.png – this graph shows how all of your cell parameters are changing
• Axis_deformation.png – this graph presents the a-, b-, c-axis and the cell volume in terms of the percent

deformation from your reference structure
• Angle_deformation.png – this graph presents alpha, beta, gamma and the cell volume in terms of the

percent deformation from your reference structure
• Quality_Statistics.png – this graph presents the quality statistics and how they change throughout the

experiment
• Bond_Lengths.csv – this file contains all of the extracted bond length information from the finalised CIF

files – this file will only be present if specified in the conf.yaml file
• Bond_Angles.csv – this file contains all of the extracted bond angle information from the finalised CIF

files – this file will only be present if specified in the conf.yaml file
• Bond_Torsions.csv – this file contains all of the extracted torsion angle information from the finalised

CIF files – this file will only be present if specified in the conf.yaml file
• Important_Bond_Lengths.csv – this file contains all of the extracted bond lengths only for the atoms of

interest (ie a metal in a complex) – this file will only be present if specified in the conf.yaml file, which
is also where you specify the atom(s) of interest

• Important_Bond_Angles.csv – this file contains all of the extracted bond angles only for the atoms of
interest (ie a metal in a complex) – this file will only be present if specified in the conf.yaml file, which
is also where you specify the atom(s) of interest

• Important_Bond_Torsions.csv – this file contains all of the extracted torsion angles only for the atoms of
interest (ie a metal in a complex) – this file will only be present if specified in the conf.yaml file, which
is also where you specify the atom(s) of interest

• Bonds.png – the important bond lengths have been graphed to look for distinct changes – this file will
only be present if specified in the conf.yaml file

• Angles.png – the important bond angles have been graphed to look for distinct changes – this file will
only be present if specified in the conf.yaml file

• Torsions.png – the important torsion angles have been graphed to look for distinct changes – this file will
only be present if specified in the conf.yaml file

• Individual_Bond_Length_Data – each .csv file in this folder will contain the bond angles for one set of
atoms and how they change over the experiment – this folder will only be present if specified in the
conf.yaml file

• Individual_Angle_Data – each .csv file in this folder will contain the bond angles for one set of atoms
and how they change over the experiment – this folder will only be present if specified in the conf.yaml
file

• Individual_Torsion_Data – each .csv file in this folder will contain the torsion angles for one set of
atoms and how they change over the experiment – this folder will only be present if specified in the
conf.yaml file

Refinement_Statistics has a graph for each dataset in your working directory, and shows how the statistics
change during the refinement. Use these graphs to check that your refinements have satisfactorily converged. An
example graph is given below:

Yaml Parameters

See information on the command line interface for descriptions of all yaml parameters.

Cxasap Pipeline (setup)

What it does

This is a variation of the general overall pipeline that will automatically refine, finalise and analyse a
series of structures based off a common reference. You should use this extended version if you have a
set of reduced data files from a dynamic crystallography experiment that are not necessarily in the
correct file structure for ‘cxasap pipeline’. You should also consider this option if you do not have a
reference CIF file including required instrument parameters for publication. Instead, you will have the
option of manually entering them into the conf.yaml file. Note that you can add additional CIF
parameters to the conf.yaml file as required. You will also need a reference structure in the form of
a .ins or .res file.

Input Files/Directories

You must have the following files to use this pipeline:

• .ins for each structure – must contain cell data
• .hkl for each data set – must contain all reflections
• Reference .ins or .res – must contain structure

It does not matter where your files are located on your computer, but note that when the code makes your
directory structure, you will need to place your .ins/.hkl files in each folder before proceeding with the code. It
also does not matter what your files are called. The only restriction of course is that SHELXL requires your .ins
and .hkl files to have the same name as each other.

Output Files/Directories

CX-ASAP will create two additional folders in your working directory: ‘CIF_Analysis’ and
‘Refinement_Statistics’.

CIF_Analysis contains your finalised structures and various forms of analysis. Output files/directories in this
folder are listed below:

• Combined.cif – this is your finalised CIF file, which combines each of the individual structures in your
working directory

• Check_CIF.chk – this is your automated checkCIF report for all structures in the combined CIF file
• CIF_Parameters.csv – this file contains your tabulated CIF parameters including (but not limited to!)

unit cell axis and data quality statistics – your conf.yaml file will allow you to specify what data is
extracted here

• Cell_parameters.png – this graph shows how all of your cell parameters are changing
• Axis_deformation.png – this graph presents the a-, b-, c-axis and the cell volume in terms of the percent

deformation from your reference structure
• Angle_deformation.png – this graph presents alpha, beta, gamma and the cell volume in terms of the

percent deformation from your reference structure
• Quality_Statistics.png – this graph presents the quality statistics and how they change throughout the

experiment
• Bond_Lengths.csv – this file contains all of the extracted bond length information from the finalised CIF

files – this file will only be present if specified in the conf.yaml file
• Bond_Angles.csv – this file contains all of the extracted bond angle information from the finalised CIF

files – this file will only be present if specified in the conf.yaml file

• Bond_Torsions.csv – this file contains all of the extracted torsion angle information from the finalised
CIF files – this file will only be present if specified in the conf.yaml file

• Important_Bond_Lengths.csv – this file contains all of the extracted bond lengths only for the atoms of
interest (ie a metal in a complex) – this file will only be present if specified in the conf.yaml file, which
is also where you specify the atom(s) of interest

• Important_Bond_Angles.csv – this file contains all of the extracted bond angles only for the atoms of
interest (ie a metal in a complex) – this file will only be present if specified in the conf.yaml file, which
is also where you specify the atom(s) of interest

• Important_Bond_Torsions.csv – this file contains all of the extracted torsion angles only for the atoms of
interest (ie a metal in a complex) – this file will only be present if specified in the conf.yaml file, which
is also where you specify the atom(s) of interest

• Bonds.png – the important bond lengths have been graphed to look for distinct changes – this file will
only be present if specified in the conf.yaml file

• Angles.png – the important bond angles have been graphed to look for distinct changes – this file will
only be present if specified in the conf.yaml file

• Torsions.png – the important torsion angles have been graphed to look for distinct changes – this file will
only be present if specified in the conf.yaml file

• Individual_Bond_Length_Data – each .csv file in this folder will contain the bond angles for one set of
atoms and how they change over the experiment – this folder will only be present if specified in the
conf.yaml file

• Individual_Angle_Data – each .csv file in this folder will contain the bond angles for one set of atoms
and how they change over the experiment – this folder will only be present if specified in the conf.yaml
file

• Individual_Torsion_Data – each .csv file in this folder will contain the torsion angles for one set of
atoms and how they change over the experiment – this folder will only be present if specified in the
conf.yaml file

Refinement_Statistics has a graph for each dataset in your working directory, and shows how the statistics
change during the refinement. Use these graphs to check that your refinements have satisfactorily converged. An
example graph is given below:

Yaml Parameters

See information on the command line interface for descriptions of all yaml parameters.

Refine Pipeline

What it does

This job-specific pipeline will refine a series of .ins/.hkl structures based on a common reference .ins
or .res file. CIF files will not be compiled or edited, and analysis will not be undertaken. This pipeline
may be useful in testing refinement models.

Input Files/Directories

You must have the following files to use this pipeline:

• .ins for each structure – must contain cell data
• .hkl for each data set – must contain all reflections
• Reference .ins or .res – must contain structure

It does not matter where your reference file is located on your computer, but your .ins/.hkl files must be in
separate folders. It also does not matter what your folders are called or what your .ins/.hkl files are called. The
only restriction of course is that SHELXL requires your .ins and .hkl files to have the same name as each other.
The file structure of your ‘working directory’ for n data sets should be as shown below:

Output Files/Directories

CX-ASAP will create an additional folder in your working directory called ‘Refinement_Statistics’.
Refinement_Statistics has a graph for each dataset in your working directory and shows how the statistics change
during the refinement. Use these graphs to check that your refinements have satisfactorily converged. An
example graph is given below:

Yaml Parameters

See information on the command line interface for descriptions of all yaml parameters.

Cif Pipeline

What it does

This job-specific pipeline will merge a series of .cif files with any instrument parameter CIF files and
compile them into one combined CIF. Consider using this pipeline if you needed to do a large series of
refinements by hand and wish to quickly combine and finalise your CIF files.

Input Files/Directories

You must have the following files to use this pipeline:

• Structure CIF for each data set
• Instrument CIF for each data set

Your instrument CIFs will need to be distinguished from the structure CIFs. CX-ASAP gives you two
options to do this:

1) Your instrument CIFs can all have different file names but a unique ending that is NOT ‘.cif’.
An example of an acceptable instrument CIF is based off the Rigaku naming system –
‘structure_1.cif_od’.

2) All of your instrument CIFs over the different folders must have an IDENTICAL name. An
example of an acceptable instrument CIF is based off the Australian Synchrotron’s autoprocess
naming system – ‘autoprocess.cif’.

Output Files/Directories

Output files will appear in your working directory. Two files will be output by the program:

• Combined.cif – all of the CIF files merged into one file
• Check_CIF.chk – the automated checkCIF report corresponding to the combined CIF file

Yaml Parameters

See information on the command line interface for descriptions of all yaml parameters.

Analysis Pipeline

What it does

This job-specific pipeline will analyse a series of CIF files and extract desired parameters into .csv files
(which can be opened in Excel). Some graphical analysis will be given as well. Examples of parameters
you can tabulate include:

• Cell axis
• Refinement statistics
• Temperature
• Bond lengths
• Angles
• Torsions

You should consider using this pipeline if you needed to refine and prepare all your CIFs by hand, but
would like quick extraction of parameters for data analysis.

Input Files/Directories

You must have the following files to use this pipeline:

• CIF files
• Reference .ins that has a unit cell to compare to for cell deformations

Your CIF files should be contained within a single folder, the name of which does not matter.

Output Files/Directories

CX-ASAP will output several analysis files based on your CIF file(s). These output files/directories in this folder
are listed below:

• Combined.cif – this is your finalised CIF file, which combines each of the individual structures in your
working directory

• Check_CIF.chk – this is your automated checkCIF report for all structures in the combined CIF file
• CIF_Parameters.csv – this file contains your tabulated CIF parameters including (but not limited to!)

unit cell axis and data quality statistics – your conf.yaml file will allow you to specify what data is
extracted here

• Cell_parameters.png – this graph shows how all of your cell parameters are changing
• Axis_deformation.png – this graph presents the a-, b-, c-axis and the cell volume in terms of the percent

deformation from your reference structure
• Angle_deformation.png – this graph presents alpha, beta, gamma and the cell volume in terms of the

percent deformation from your reference structure
• Quality_Statistics.png – this graph presents the quality statistics and how they change throughout the

experiment
• Bond_Lengths.csv – this file contains all of the extracted bond length information from the finalised CIF

files – this file will only be present if specified in the conf.yaml file
• Bond_Angles.csv – this file contains all of the extracted bond angle information from the finalised CIF

files – this file will only be present if specified in the conf.yaml file
• Bond_Torsions.csv – this file contains all of the extracted torsion angle information from the finalised

CIF files – this file will only be present if specified in the conf.yaml file
• Important_Bond_Lengths.csv – this file contains all of the extracted bond lengths only for the atoms of

interest (ie a metal in a complex) – this file will only be present if specified in the conf.yaml file, which
is also where you specify the atom(s) of interest

• Important_Bond_Angles.csv – this file contains all of the extracted bond angles only for the atoms of
interest (ie a metal in a complex) – this file will only be present if specified in the conf.yaml file, which
is also where you specify the atom(s) of interest

• Important_Bond_Torsions.csv – this file contains all of the extracted torsion angles only for the atoms of
interest (ie a metal in a complex) – this file will only be present if specified in the conf.yaml file, which
is also where you specify the atom(s) of interest

• Bonds.png – the important bond lengths have been graphed to look for distinct changes – this file will
only be present if specified in the conf.yaml file

• Angles.png – the important bond angles have been graphed to look for distinct changes – this file will
only be present if specified in the conf.yaml file

• Torsions.png – the important torsion angles have been graphed to look for distinct changes – this file will
only be present if specified in the conf.yaml file

• Individual_Bond_Length_Data – each .csv file in this folder will contain the bond angles for one set of
atoms and how they change over the experiment – this folder will only be present if specified in the
conf.yaml file

• Individual_Angle_Data – each .csv file in this folder will contain the bond angles for one set of atoms
and how they change over the experiment – this folder will only be present if specified in the conf.yaml
file

• Individual_Torsion_Data – each .csv file in this folder will contain the torsion angles for one set of
atoms and how they change over the experiment – this folder will only be present if specified in the
conf.yaml file

Yaml Parameters

See information on the command line interface for descriptions of all yaml parameters.

	Introduction
	Quick Start Guide
	Requirements
	Operating system requirements
	Software requirements
	Linux - Instructions for setting up a Linux Virtual Machine
	Linux - Instructions for installing Python
	Linux - Instructions for putting software in your path
	Linux - Common Errors
	MacOS - Instructions for installing Python
	MacOS - Instructions for putting software in your path
	MacOS - Common Errors
	Windows - Installation Instructions
	Windows - Common Errors
	Additional notes for XDS Installation
	Installing XPREP on a Mac
	GitHub Configuration

	Installation
	CX-ASAP Installation
	Testing Your Installation

	Reporting Errors
	Using CX-ASAP
	Command-line Interface
	Configuration Using ‘conf.yaml’
	Error Logs
	Structure and Execution
	Pipelines
	Cxasap Pipeline
	What it does
	Input Files/Directories
	Output Files/Directories
	Yaml Parameters

	Cxasap Pipeline (setup)
	What it does
	Input Files/Directories
	Output Files/Directories
	Yaml Parameters

	Refine Pipeline
	What it does
	Input Files/Directories
	Output Files/Directories
	Yaml Parameters

	Cif Pipeline
	What it does
	Input Files/Directories
	Output Files/Directories
	Yaml Parameters

	Analysis Pipeline
	What it does
	Input Files/Directories
	Output Files/Directories
	Yaml Parameters

